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Previous work on the stochastic realization and approximation problem has cast 
this problem in the framework of the RV-coetticient, a measure of correlation 
recently introduced in the multivariate statistical literature. This allowed the 
introduction of a common measure for the "goodness of fit" for the different 
realization algorithms. This paper explores the deeper geometrical and logical 
foundation for this common measure in a unified theory for the data-driven and 
the exact covariance approaches. 

1. I N T R O D U C T I O N  

1.1. Scope of  the Paper 

In  the theory  o f  identification, signal processing, and digital filtering, a 
problem of  fundamenta l  impor tance  is that  o f  finding a finite-dimensional 
Markov ian  representat ion o f  a stochastic process f rom the covariance infor- 
mation.  This problem is known  as the stochastic realization problem, and 
has received a great deal o f  attention. Whenever  a finite set o f  real da ta  is 
gathered, all processing is done over finite sets, and an underlying probabilis- 
tic description is absent in mos t  cases. As a result, covariances mus t  be 
estimated by sample covariances,  and a "degrada t ion"  o f  the theoretical 
realization solutions results. A more  direct, data-driven approach  is needed. 
Moreover ,  for m a n y  applications, the Markov ian  representat ion or  state 
space model  may  be too complex, due to its high dimensionality,  thus barr ing 
efficient computa t iona l  management .  This motivates  the quest for approxi-  
mate  lower-order  models,  and the need for c o m m o n  measures to evaluate 
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and compare different approaches. In this paper the geometry of the stochas- 
tic realization problem, both exact and approximate, is investigated, and it is 
linked to some notions in the theoretical foundations of quantum mechanics. 
More precisely, measures on the subspaces of a Hilbert space are introduced, 
which relate to the density matrices in the quantum mechanical context. 

In Section 2, the stochastic realization problem is briefly reviewed, and 
cast as a problem of finding "good" subspaces. The Gleason measures are 
introduced in Section 3, and form the main basis for the further development. 
Section 4 shows that they lead to natural criteria for the evaluation of 
different subspaces, conditioned on some prior. As a particular application, 
the different stochastic realization algorithms can be unifed (and evaluated). 

1.2. Historical  Background 

Akaike (1975) has developed a stochastic realization theory based on 
the information interface between the past and the future of a time series 
and the concepts of canonical correlation analysis. The theory is further 
refined by Faurre (1976). The two canonical vectors are shown to be related 
to the states of the forward and backward innovations representation of the 
process. Moreover, the canonical correlation analysis provides a rational 
basis for obtaining reduced order models. Baram (1981) extended the results 
to the nonstationary case. A similar algorithm for obtaining the stochastic 
realization and the reduced order models, called canonical realization 
algorithm (CRA), was introduced by Desai and Pal (1982). They obtain 
forward-backward dual models with state covariances which are equal and 
diagonal. (These diagonal elements are the canonical correlations.) They are 
the stochastic counterpart of the deterministic balanced realizations intro- 
duced by Moore (1981) and extended to the time-varying case by Verriest 
and Kailath (1983). Finkelstein and Finkelstein (1983) studied the prediction 
of the output of an arbitrary automaton from its input through the Galois 
lattice of the transition relation. 

Arun and Kung (1986) proposed the Karhunen-Loeve method (KLM) 
as a basis for the stochastic realization. KLM is equivalent to a principal 
component analysis of instrumental variables. 

Ramos and Verriest (1984) unified the theory by showing that both 
CRA and KLM, given the exact covariances, are special cases of a more 
general optimization problem, using the R V-coefficient introduced by 
Escoufier (1973). It was shown that this common statistical measure of 
information provides a rationale for drawing inferences about the perfor- 
mance of the algorithms. Verriest (1985) explored the connection of the 
exact covariance and real data case further by relating the R V-coefficient to 
certain operators in a tensor product space G| where G and H are 
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separable Hilbert spaces. Here G is a base-space, R p say, and H is, 
respectively, LP(f~, B, M) and R N. The idea is to associate for a given ele- 
ment in the tensor product space (considered as a prior for the problem) an 
operator in H. The set of such operators has the structure of a Hilbert space 
under the inner product inherited from the inner product in H itself. The 
usual induction 

inner product ~ norm ~ distance 

leads to rigorous definition of similarity (or correlation) of subspaces Gl |  
and G2| 

2. THE STOCHASTIC REALIZATION PROBLEM 

2.1. Problem Formulation 

Given the covariance sequence A(k) of a rational, stationary, zero- 
mean, discrete-time vector sequence { yk}, the stochastic realization problem 
consists in finding a Markovian representation of the form 

Xk + 1 = F X k  + Wk (2.1) 

Yk  = H X k  + Ok (2.2) 

where {w~} and {vk} are white Gaussian noises with 

such that E(2Pk+n)5~)= A(n). Here 8kl is the Kronecker delta. 
The solution to this problem is described by Faurre (1976). Given the 

covariance sequence, one forms the (infinite) Hankel matrix 

A(2) - �9 .]  
H =  [AAI~:. A(3) (2.4) 

The time sequence is rational if and only if this Hankel matrix has finite 
rank (say n). It follows then from the deterministic realization theory that 
the order of any minimal Markovian representation of {Yk} is precisely n, 
and a triple (F, G, H) can be constructed such that 

A(k) = H F k H  1 + Aot~kO, k>_0 

A(k) = A'(-k) ,  k_<0 (2.5) 
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where in order to have a Markovian representation, the following needs to 
be satisfied: 

P -  F P F '  = Q (2.6) 

G -  F P H '  = S (2.7) 

Ao-  H P H '  = R (2.8) 

Here P is interpreted as the state covariance matrix 

P = E(xkx 'k)  (2.10) 

The triple (F, G, H) together with Ao do not uniquely specify the covariances 
P, Q, S, and R. However, P completely specifies Q, S, and R, and therefore 
characterizes the Markovian representation. Furthermore, note that any 
minimal realization of the covariance sequence is Unique, modulo a similarity 
transformation. 

2.2. Information Interface Between Past and Future 

Assume that the stochastic time series {yk} is Gaussian (with zero 
mean)�9 The relevant random variables are then in the Hilbert space 
L2(f~,/3, P) and conditional expectations can be interpreted as orthogonal 
projections onto subspaces L2(f~, ~yk},  p). 

For the time series {Yk} define the infinite vectors 

FyI ] y ~ =  

F -q 

the future 

the past (2.11) 

and define the semi-infinite covariance matrices 

fI=E{Y;(Y;)'}, R + =E(Y;(Y})'}, 

R- =E{Y~(Yk)'} 
(2.12) 



Unified Theory of Model Reduction via Gleason Measures 1707 

Within this representation, the forward and backward predictor subspaces 
are 

Xk=Span(Y~- [ Y;), Zk-, =Span(Y;[  Y~-) (2.13) 

(AIB) denotes the projection of span (A) onto the Hilbert space spanned 
by the components of B. These two spaces form the information interface 
between R + and R- .  Either one can be used to define a minimal Markovian 
representation (forward or backward). The canonical correlations lead to a 
natural distance measure between the past and the future, which for the 
Gaussian case is exactly the Kullback-Leibler information. 

Alternatively, the past can be treated as the instrumental variables for 
predicting the future. This is the principal component approach taken by 
Arun and Kung (1986). Retaining the components of the past that have a 
significant contribution to the predictive efficiency of the future is their 
motivation. 

Despite the nice intuitive appeal of a canonical correlation analysis, 
their critique on the method centers on two issues: (1) variables may be 
strongly correlated, and yet not extract significant portions of the variance; 
(2) robustness may be at stake if one deals with sample covariances rather 
than the exact ones. 

Ramos and Verriest (1984) and Ramos ( 1985) resolved the two methods 
by putting them in a common framework, optimizing Escoufier's (1973) RV- 
coefficient under different constraints. If for random vectors X and Y 

then 

cov(X, y)=[~,l ~q21 
I_221 Y~=_I 

Tr(~12~21) 
R V(X, Y) - [ T~(Z ?1) Tr(]~g2)] 1/2 ~-~ 0 (2.14) 

This measure shares many of the properties of a correlation coefficient, but 
is not one itself. (It is the square of the correlation if X and Y are scalar.) 
It also allows the computation of a "figure of merit" for each algorithm in 
a consistent way. Our new Gleason approach gives a natural interpretation 
for (2.14) (and other) measures. 

3. THE LATTICE OF SUBSPACES AND GLEASON MEASURES 

Let H be a Hilbert space. The set of all closed subspaces of H has the 
structure of an orthocomplemented complete lattice, also called a logic. (The 
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predicate calculus of a quantum mechanical system bears some similarity to 
the corresponding calculus of formal logic; one refers to this often as "quan- 
tum logic.") A one-to-one correspondence exists between the lattice of all 
closed subspaces of H and the lattice Proj H of all orthoprojectors on H. 

In his study of the mathematical foundations of quantum mechanics, 
Mackey posed the problem of finding all positive measures on the closed 
subspaces of a Hilbert space. Such a measure must have the property that 
for any countable collection {Si} of mutually orthogonal closed subspaces 
the mapping is o--additive, i.e., 

A measure satisfying the above property is for instance obtained by selecting 
a vector v in the Hilbert space H, and for each subspace A of H defining 

p~(A) = tlPA(v)I[ 2 (3.2) 

where pA is the projection operation on A. Clearly, finite convex combina- 
tions of such measures also satisfy the conditions for such measures, and 
passing to the limit, any positive-semidefinite trace-class operator T also 
defines such a measure via 

p(A) = Tr(TP A) (3.3) 

Gleason (1957) has shown that in a separable Hilbert space of dimension at 
least three, every measure on the closed subspaces can be represented as 
above, with T a positive-definite operator of trace class. Further extensions 
of Gleason measures which are vector- and operator-valued, have been 
surveyed by Jajte (1979). 

Let H be a separable Hilbert space, and Proj H the lattice of all ortho- 
gonal projectors in H. Let also E be some Banach space, then: 

Definition. A mapping 4: Proj H ~  E is said to be an E-valued Gleason 
measure if: 

(1) For any sequence of pairwise orthogonal projectors P1, P2 . . . .  
from Proj H, 

the series on the left-hand side being weakly convergent. 

(2) sup{ t[~Pil[ : Pi~Proj H} < ov (3.5) 
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Jajte and Paszkiewicz (1978) have shown that every Gleason measure 
on Proj H can be extended in a unique way to a continuous operator on 

L(H), the algebra of all bounded linear operators in H. 
An important class of Gleason measures taking values in a Hilbert space 

are the orthogonally scattered measures (OSG). Let H and K be two Hilbert 
spaces, with dimension at least three. 

Definition. A Gleason measure ~ : Proj H ~ K is said to be an orthogon- 
ally scattered measure (OSG-measure) if for any orthogonal projectors P, 
Q in Proj H the following implication holds: 

P _L Q =~ ~P / ~Q (3.6) 

Note that automatically for all P, II~PII-< II~III is implied, where I is the 
identity operator, corresponding with the (sub)space H. 

Any OSG-measure defines a positive Gleason measure by 

~ e =  tl~ell 2, esProj  n (3.7) 

By Gleason's theorem, there exists then a nonnegative self-adjoint trace- 
class operator T such that 

/~P=Tr TP, P~Proj H (3.8) 

The above can be interpreted as a "variance"; we similarly define a "covari- 
ance" by COV{P, Q} = (~P, ~Q)K. Then for any commuting projectors P, 
Q~Proj H one has 

(~P, ~Q)K = Tr TPQ (3.9) 

This formula is not true in general for arbitrary projectors in a complex 
Hilbert space. However, if H and K are real Hilbert spaces, then it can be 
shown that 

(~P, ~Q)K=Tr TPQ=Tr TOP, all P, Q~Proj n (3.10) 

T is given by Gleason's theorem (3.9). 

4. APPLICATIONS TO REALIZATION THEORY 

4.1. A Correlation Measure for Subspaces 

As shown by Verriest (1986), the (exact) stochastic realization and the 
(real) signal modeling benefit from the use of the R V-coefficient. In the first 
case, the formalism is used in the comparison of random variables, while in 
the second it compares data matrices. We present here a geometric point of 
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view, motivated by the observation that for the stochastic realization prob- 
lem, the underlying space L~(D, B, m) and in the real data case, the space 
R p • N are isomorphic with the tensor product spaces, respectively, 

L~(YI, B, m),,, RP | L2(fl, B, m) (4.1) 

Rp x N R p | R N (4.2) 

In general, let G and H be separable Hilbert spaces. Let {q~i} be a complete 
orthonormal set (CONS) in G, and { ~}  a CONS in H. Any vector x in the 
tensor product space G | H has a decomposition 

x =  Z Ixi) (~,~1 (4.3) 
i 

where x ~ G .  The vector x in the tensor product space will be referred to as 
a "prior." Introduce now the superposition of measures on Proj G induced 
by the prior: 

P x = E/1i (4.4) 
i 

The/.t~ are the Gleason measures corresponding to xl. For all subspaces of 
G, it follows that 

px(A) = Tr T~P A (4.5) 

where 

Tx = E I xi) (xi  I = xx' (4.6) 
i 

is interpreted as a gramian or covariance operator. 
The measure px(A) gives a numerical value to the closeness of A to G, 

given the prior x. 
The problem of finding the subspace of fixed dimension which "looks 

most like H from the point of view of x" is then solved by letting pA be the 
projector on the eigenspace of T~ with the largest principal components. See 
Aragon and Couot (1976), who also stated several equivalent problems 
relating to the principal component analysis. Note that p x ( H ) =  Tr T~. 

However, this measure does not lead to a useful definition of the correla- 
tion between subspaces. Indeed, consistent with the above "variance" px we 
have the covariance [using (3.10)] 

(~ (A) ,  ~(B))  =Tr  T~PAP B (4.7) 

But for A _1_ B, we get (~x(A), ~x(B)) = 0. There is no interface between A 
and B. This situation is displeasing, but can be resolved. The operator 
T~: G ~  G is a characteristic for the given x in G |  (in fact, a "sufficient 
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statistic"), and one can think of T (or p) as conditioned by the vector 
x~G | H. In this sense, the extended projectors PS~Proj G | H defined by 

pBx=Z 
i 

= E ~xi(B) ( q~, I (4.8) 
i 

yield a "coherent" addition of OSG measures, conditioned on x (i.e., a 
posterior measure). The posterior variance of A eProj G, given x, is then the 
operator from G ~ G, 

(PAx)(P 'x) '= Z PAlxi)(xi I PA = PATxPA (4.9) 
i 

and the covariance 

'=Z P lxi) (x, IP  =PBTxP  (4.10) 
i 

This is simply interpreted as the restriction to B of the mapping T~ restricted 
to the subspace A, and displays the coupling or interface between A and B 
given x. In order to attach a numerical value to this interface, any norm 
on the various restrictions PBTxPA can be chosen. The following natural 
definition follows. 

Definition. The "correlation" between subspaces A and B in Proj G is 

IIPATxPSII 
p(A, nlx)-(lleAZxe,~ll tleBzxesll),/2 (4.11) 

In particular, the Frobenius norm becomes 

Tr(PAT~PSTx) 
pF( A, B [ x) - [Tr( pAT~)2 Tr( PBTx)2]l/2 (4.12) 

The spectral norm gives 

2m,x(P ~ TxP STx) 
p2(A, B[x) 2~ax(pATx)Xmax(PSTx) (4.13) 

For the special case of N observed p-vectors xi, let G = R p and H = R N, 
SO that the data are organized in the data matrix X. Then Tx=XX ' is the 
sample covariance matrix S, and the correlation between the complementary 
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subspaces span(q~l . . . . .  ~bk) and span(~bk+ 1 . . . . .  ~bp) is (for an obvious par- 
tition of S) 

Tr($12S21) 
P F -  (Tr $12~ Tr  822) 1/2 (4.14) 

which is the R V-coefficient. Note that then also 

Tr S2pA -(-Tr S- ZpA] '/2 (4.15) 
p F ( A ' H [ x ) - ( T r S 2 T r S 2 p A ) ' / 2  \ T r S  2 J 

which again yields the principal component analysis, since A maximizes 
pF(A, H I x) iff A maximizes px(A). 

Let L be a bounded operator in G. The induced transformation/~ in 
G |  

=X [Lx,> <4,1 (4.16) 
i 

yielding the transformation rule for the Gleason measure. For all A ~ Proj G 

pr=(A) = Tr TrxP A = Tr LTxL'P A (4.17) 

Let K be the fixed subspace s p a n ( ~ a , . . . ,  ~bk) of G. Letting further 

L = MPX+ NP K~ (4.18) 

then the principal component analysis and canonical correlation analysis are 
respectively (in Frobenius norm) [O(K) is the set of bounded operators 
in K]. 

Tr( MTlz T21M') 
PCA: max (4.19) 

M~o(x) [Tr(MT11M') 2 Tr(T22)2] 1/2 

Tr(MT12NN'T21M') 
CCA: max (4.20) 

~ o ( m  [Tr(MTlIM') 2 Tr(NT22N')2] 1/2 
N~ O(K • 

which are the formulas obtained by Robert and Escoufier (1976). If  
G |  B, m) o r  R pN, then T is respectively the covariance E or 
sample covariance S. 

4.2. Data-Driven Stochastic Realization Solution 

Assuming that a data stream {yk, I k] _<N} is observed, a data 
matrix Y can be formed by considering (Y-N, 0 . . . . .  0)', 
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(Y-N+I, Y - N ,  0 . . . . .  0)', . . . .  (YN, YN-1 . . . . .  Y-N)' ,  . . . .  ( 0 , . . . ,  O, YN)' 
as consecutive samples of the vector in G = R 2 N + l  (the "pure states"). In 
order to avoid the nasty end effects due to the substitution of zeros where 
data are missing, a linear superposition of these states, weighted by the 
sequence {qj>0; j =  1 , . . . ,  4N+ 1}, may be used. Let Q=diag{qi}. The 
Gleason operator is T( y , q )  = Y Q Y ' .  The "past" is span{ I ~b_N) " ' "  [ ~ - 1 ) } ,  

and the future span{l~b0)" ' '  I q~N)}. A recursive realization algorithm, 
which optimally uses all the data (in real time), would necessarily involve 
the update of T(r,q~N. (Strictly speaking, its dimension is increasing also, but 
the operator can be trivially extended to one acting in some "big" space.) 
This is obvious since the new datum creates a new "sample vector" so that 
the weights qi will have to be recalculated for the linear superposition. 
Another difficulty lies in the fact that all samples that were obtained by shifts 
now have the new observation attached to it (i.e., where before a "zero" 
occurred). This is avoided if a windowed (hence, nonoptimal) recursion is 
used. 

5. CONCLUSIONS 

By determining well-motivated measures for the correlation between 
subspaces of a Hilbert space, based on the available prior information, it 
was possible to unify several tools from multivariate analysis, and introduce 
common measures for their evaluation. We have only discussed the principal 
component and the canonical correlation analyses. Discriminant analysis 
and a rational way for discarding variables can also be treated. Our inspira- 
tion for this work came from the desire to better motivate and explain the 
use of the R V-statistic in these problems. In particular, exact realization 
theory and its signal processing counterpart (i.e., the real data case) are 
unified. The fact that the data should come first looks natural from this 
viewpoint. Deterministic modeling, cluster analysis (in pattern recognition), 
and quantization of random fields are other applications of our abstract 
framework. The variation lies in the choice of the spaces G and H, and the 
constraints that are natural for the problem. 
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